Compare commits
No commits in common. "3da12232a3b9799e54e7036af92cf2e4e9429fe4" and "23fd1db63310aeacc7dbd582a9972e947d8ae7d5" have entirely different histories.
3da12232a3
...
23fd1db633
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,6 +1,4 @@
|
||||
.idea/
|
||||
.vs/
|
||||
lib/
|
||||
bin/
|
||||
CMakeLists.txt.user
|
||||
|
||||
|
||||
@ -1,17 +1,12 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/modules/")
|
||||
set(CMAKE_CXX_FLAGS "-std=c++17 -g -O2 -pthread")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "-ggdb -O0 -pthread")
|
||||
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -ggdb -O2")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS} -std=c++14 -ggdb -O0")
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/bin)
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${CMAKE_SOURCE_DIR}/bin)
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${CMAKE_SOURCE_DIR}/bin)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${CMAKE_SOURCE_DIR}/lib)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${CMAKE_SOURCE_DIR}/lib)
|
||||
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE ${CMAKE_SOURCE_DIR}/lib)
|
||||
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG ${CMAKE_SOURCE_DIR}/lib)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/lib)
|
||||
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/lib)
|
||||
|
||||
include_directories(include)
|
||||
link_directories(lib)
|
||||
|
||||
@ -119,7 +119,29 @@ find_path(FFMPEG_INCLUDE_DIR6 swresample.h
|
||||
)
|
||||
|
||||
if(FFMPEG_INCLUDE_DIR1)
|
||||
set(FFMPEG_INCLUDE_DIR ${FFMPEG_INCLUDE_DIR1})
|
||||
if(FFMPEG_INCLUDE_DIR2)
|
||||
if(FFMPEG_INCLUDE_DIR3)
|
||||
set(FFMPEG_INCLUDE_DIR ${FFMPEG_INCLUDE_DIR1}
|
||||
${FFMPEG_INCLUDE_DIR2}
|
||||
${FFMPEG_INCLUDE_DIR3})
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(FFMPEG_INCLUDE_DIR4)
|
||||
set(FFMPEG_INCLUDE_DIR ${FFMPEG_INCLUDE_DIR}
|
||||
${FFMPEG_INCLUDE_DIR4})
|
||||
endif()
|
||||
|
||||
if(FFMPEG_INCLUDE_DIR5)
|
||||
set(FFMPEG_INCLUDE_DIR ${FFMPEG_INCLUDE_DIR}
|
||||
${FFMPEG_INCLUDE_DIR5}
|
||||
${FFMPEG_INCLUDE_DIR5}/..)
|
||||
endif()
|
||||
|
||||
if(FFMPEG_INCLUDE_DIR6)
|
||||
set(FFMPEG_INCLUDE_DIR ${FFMPEG_INCLUDE_DIR}
|
||||
${FFMPEG_INCLUDE_DIR6})
|
||||
endif()
|
||||
|
||||
find_library(FFMPEG_avformat_LIBRARY avformat
|
||||
@ -231,41 +253,6 @@ mark_as_advanced(
|
||||
_FFMPEG_z_LIBRARY_
|
||||
)
|
||||
|
||||
if(WIN32)
|
||||
set(FFMPEG_WIN "ffmpeg-3.3.3-win64-dev")
|
||||
set(FFMPEG_WIN_BINARIES "ffmpeg-3.3.3-win64-shared")
|
||||
if(NOT EXISTS "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}.zip")
|
||||
file(DOWNLOAD "http://ffmpeg.zeranoe.com/builds/win64/dev/${FFMPEG_WIN}.zip" "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}.zip")
|
||||
file(DOWNLOAD "https://ffmpeg.zeranoe.com/builds/win64/shared/${FFMPEG_WIN_BINARIES}.zip" "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}.zip")
|
||||
endif()
|
||||
if(NOT EXISTS "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}")
|
||||
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xfz "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}.zip" WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
|
||||
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xfz "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}.zip" WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
|
||||
endif()
|
||||
set(FFMPEG_INCLUDE_DIR "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}/include")
|
||||
set(FFMPEG_LIBRARY_DIRS "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN}/lib")
|
||||
set(FFMPEG_DLLS_DIR "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin")
|
||||
set(FFMPEG_LIBRARIES "${FFMPEG_LIBRARY_DIRS}/avcodec.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/avformat.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/avdevice.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/avfilter.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/avutil.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/postproc.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/swresample.lib"
|
||||
"${FFMPEG_LIBRARY_DIRS}/swscale.lib")
|
||||
|
||||
set(FFMPEG_AVCODEC_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/avcodec-57.dll")
|
||||
set(FFMPEG_AVFORMAT_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/avformat-57.dll")
|
||||
set(FFMPEG_AVDEVICE_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/avdevice-57.dll")
|
||||
set(FFMPEG_AVFILTER_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/avfilter-6.dll")
|
||||
set(FFMPEG_AVUTIL_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/avutil-55.dll")
|
||||
set(FFMPEG_POSTPROC_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/postproc-54.dll")
|
||||
set(FFMPEG_SWRESAMPLE_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/swresample-2.dll")
|
||||
set(FFMPEG_SWSCALE_DLL "${CMAKE_CURRENT_BINARY_DIR}/${FFMPEG_WIN_BINARIES}/bin/swscale-4.dll")
|
||||
|
||||
set(FFMPEG_FOUND "YES")
|
||||
endif()
|
||||
|
||||
# Set package properties if FeatureSummary was included
|
||||
if(COMMAND set_package_properties)
|
||||
set_package_properties(FFMPEG PROPERTIES DESCRIPTION "A complete, cross-platform solution to record, convert and stream audio and video")
|
||||
|
||||
@ -158,21 +158,6 @@ IF(SDL2_LIBRARY_TEMP)
|
||||
SET(SDL2_LIBRARY_TEMP "${SDL2_LIBRARY_TEMP}" CACHE INTERNAL "")
|
||||
ENDIF(SDL2_LIBRARY_TEMP)
|
||||
|
||||
if(WIN32)
|
||||
set(SDL2_WIN "SDL2-2.0.5")
|
||||
if(NOT EXISTS "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}.zip")
|
||||
file(DOWNLOAD "http://www.libsdl.org/release/SDL2-devel-2.0.5-VC.zip" "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}.zip")
|
||||
endif()
|
||||
if(NOT EXISTS "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}")
|
||||
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xfz "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}.zip" WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
|
||||
endif()
|
||||
set(SDL2_INCLUDE_DIR "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}/include")
|
||||
set(SDL2_LIBRARY "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}/lib/x64/SDL2.lib"
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}/lib/x64/SDL2main.lib")
|
||||
set(SDL2_DLL "${CMAKE_CURRENT_BINARY_DIR}/${SDL2_WIN}/lib/x64/SDL2.dll")
|
||||
set(SDL2_FOUND YES)
|
||||
endif()
|
||||
|
||||
INCLUDE(FindPackageHandleStandardArgs)
|
||||
|
||||
FIND_PACKAGE_HANDLE_STANDARD_ARGS(SDL2 REQUIRED_VARS SDL2_LIBRARY SDL2_INCLUDE_DIR)
|
||||
|
||||
BIN
doc/ffcpp.vpp
BIN
doc/ffcpp.vpp
Binary file not shown.
@ -1,13 +1,3 @@
|
||||
option(BUILD_WITH_TSAN "Build with thread sanitizer" OFF)
|
||||
option(BUILD_WITH_ASAN "Build with address sanitizer" OFF)
|
||||
|
||||
if(BUILD_WITH_TSAN)
|
||||
SET(THREAD_SANITIZER_FLAG "-fsanitize=thread")
|
||||
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${THREAD_SANITIZER_FLAG}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${THREAD_SANITIZER_FLAG}")
|
||||
SET( CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${THREAD_SANITIZER_FLAG} -ltsan" )
|
||||
endif()
|
||||
|
||||
project(ffConv)
|
||||
add_executable(ffConv ffConv.cpp)
|
||||
add_dependencies(ffConv ffcpp)
|
||||
@ -19,28 +9,11 @@ add_dependencies(ffPreview ffcpp)
|
||||
target_link_libraries(ffPreview ffcpp)
|
||||
|
||||
project(ffPlayer)
|
||||
|
||||
find_package(FFMPEG REQUIRED)
|
||||
if(NOT FFMPEG_FOUND)
|
||||
message(FATAL_ERROR "FFMpeg not found")
|
||||
endif()
|
||||
include_directories(${FFMPEG_INCLUDE_DIR})
|
||||
|
||||
find_package(SDL2 REQUIRED)
|
||||
if(NOT SDL2_FOUND)
|
||||
message(FATAL_ERROR "SDL2 not found")
|
||||
endif()
|
||||
include_directories(${SDL2_INCLUDE_DIR})
|
||||
|
||||
add_executable(ffPlayer ffPlayer.cpp)
|
||||
add_dependencies(ffPlayer ffcpp)
|
||||
target_link_libraries(ffPlayer ffcpp ${SDL2_LIBRARY})
|
||||
|
||||
if(WIN32)
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${FFMPEG_AVFORMAT_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${FFMPEG_AVCODEC_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${FFMPEG_AVUTIL_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${FFMPEG_SWSCALE_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${FFMPEG_SWRESAMPLE_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
add_custom_command(TARGET ffPlayer POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy ${SDL2_DLL} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
endif()
|
||||
@ -28,6 +28,7 @@ void flushEncoder(ff::MediaFile& file, ff::CodecPtr encoder, ff::StreamPtr inStr
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
ff::init();
|
||||
ff::MediaFile input(argv[1], ff::Mode::Read);
|
||||
ff::MediaFile output(argv[2], ff::Mode::Write);
|
||||
|
||||
@ -39,10 +40,10 @@ int main(int argc, char** argv) {
|
||||
|
||||
double aspect = 1.0*vDecoder->width()/vDecoder->height();
|
||||
int outHeight = (int)(VIDEO_WIDTH/aspect) & ~1;
|
||||
auto outVStream = output.addVideoStream(AV_CODEC_ID_HEVC, VIDEO_WIDTH, outHeight, vDecoder->timeBase(), AV_PIX_FMT_YUV420P);
|
||||
auto outVStream = output.addVideoStream(AV_CODEC_ID_H264, VIDEO_WIDTH, outHeight, vDecoder->timeBase(), AV_PIX_FMT_YUV420P);
|
||||
auto vEncoder = outVStream->codec();
|
||||
|
||||
auto outAStream = output.addAudioStream(AV_CODEC_ID_AC3, 2, 44100, AV_SAMPLE_FMT_FLTP);
|
||||
auto outAStream = output.addAudioStream(AV_CODEC_ID_VORBIS, 2, 44100, AV_SAMPLE_FMT_FLTP);
|
||||
auto aEncoder = outAStream->codec();
|
||||
|
||||
output.writeHeader();
|
||||
@ -65,8 +66,8 @@ int main(int argc, char** argv) {
|
||||
while(fifo.enoughSamples()) {
|
||||
auto frame = aEncoder->createAudioFrame();
|
||||
fifo.readFrame(frame);
|
||||
frame->setPts(aPts);
|
||||
aPts += frame->samplesCount();
|
||||
frame.setPts(aPts);
|
||||
aPts += frame.samplesCount();
|
||||
auto encPacket = aEncoder->encode(frame);
|
||||
if(!encPacket) continue;
|
||||
encPacket.setStreamIndex(AUDIO_STREAM_INDEX);
|
||||
@ -77,7 +78,7 @@ int main(int argc, char** argv) {
|
||||
auto frame = vDecoder->decode(packet);
|
||||
if(needScaling)
|
||||
frame = scaler.scale(frame);
|
||||
frame->setPictureType(AV_PICTURE_TYPE_NONE);
|
||||
frame.setPictureType(AV_PICTURE_TYPE_NONE);
|
||||
auto encPacket = vEncoder->encode(frame);
|
||||
if(!encPacket) continue;
|
||||
encPacket.setStreamIndex(VIDEO_STREAM_INDEX);
|
||||
|
||||
@ -4,14 +4,15 @@
|
||||
#include <SDL_thread.h>
|
||||
#include <iostream>
|
||||
|
||||
#include <future>
|
||||
#include <chrono>
|
||||
#include <thread>
|
||||
|
||||
namespace ff = ffcpp;
|
||||
|
||||
#define WINDOW_WIDTH 1280
|
||||
#define WINDOW_HEIGHT 720
|
||||
#define WINDOW_WIDTH 640
|
||||
#define WINDOW_HEIGHT 480
|
||||
|
||||
class SDLWindow: public ff::IVideoSink, public ff::IAudioSink {
|
||||
class SDLWindow: public ff::IVideoSink {
|
||||
private:
|
||||
template<typename T> using SDLUniquePtr = std::unique_ptr<T, void(*)(T*)>;
|
||||
using SDLWindowPtr = SDLUniquePtr<SDL_Window>;
|
||||
@ -22,14 +23,9 @@ private:
|
||||
SDLWindowPtr _wnd;
|
||||
SDLRendererPtr _renderer;
|
||||
SDLTexturePtr _texture;
|
||||
SDL_AudioSpec _audioSpec;
|
||||
SDL_AudioDeviceID _aDevId;
|
||||
|
||||
std::packaged_task<void()> _renderTask;
|
||||
ff::IAudioSource* _audioSrc;
|
||||
|
||||
public:
|
||||
SDLWindow(): _wnd(nullptr, SDL_DestroyWindow), _renderer(nullptr, SDL_DestroyRenderer), _texture(nullptr, SDL_DestroyTexture), _audioSrc(nullptr) {
|
||||
SDLWindow(): _wnd(nullptr, SDL_DestroyWindow), _renderer(nullptr, SDL_DestroyRenderer), _texture(nullptr, SDL_DestroyTexture) {
|
||||
int res = SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_TIMER);
|
||||
if(res < 0) throw std::runtime_error("Error initializing SDL");
|
||||
|
||||
@ -41,64 +37,21 @@ public:
|
||||
|
||||
_texture.reset(SDL_CreateTexture(_renderer.get(), SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING, WINDOW_WIDTH, WINDOW_HEIGHT));
|
||||
if(!_texture) throw std::runtime_error("Error creating SDL texture");
|
||||
|
||||
SDL_AudioSpec want;
|
||||
SDL_zero(want);
|
||||
want.freq = 44100;
|
||||
want.format = AUDIO_F32;
|
||||
want.channels = 2;
|
||||
want.samples = 8192;
|
||||
want.callback = SDLWindow::audioCallback;
|
||||
want.userdata = this;
|
||||
|
||||
_aDevId = SDL_OpenAudioDevice(nullptr, 0, &want, &_audioSpec, SDL_AUDIO_ALLOW_ANY_CHANGE);
|
||||
if(_aDevId == 0) throw std::runtime_error("Error opening audio device");
|
||||
|
||||
SDL_PauseAudioDevice(_aDevId, 0);
|
||||
}
|
||||
|
||||
void handleEvents() {
|
||||
SDL_Event event;
|
||||
|
||||
while(true) {
|
||||
SDL_WaitEvent(&event);
|
||||
switch(event.type) {
|
||||
case SDL_QUIT:
|
||||
return;
|
||||
case SDL_USEREVENT: {
|
||||
_renderTask();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
static void audioCallback(void* userdata, Uint8* stream, int len) {
|
||||
ff::IAudioSource* src = static_cast<SDLWindow*>(userdata)->_audioSrc;
|
||||
|
||||
if(src) {
|
||||
//std::cout << "fill sample buffer" << std::endl;
|
||||
src->fillSampleBuffer(stream, len);
|
||||
}
|
||||
}
|
||||
|
||||
AVSampleFormat sdlToFFMpeg(SDL_AudioFormat format) {
|
||||
switch (format) {
|
||||
case AUDIO_S16: return AV_SAMPLE_FMT_S16;
|
||||
case AUDIO_S32: return AV_SAMPLE_FMT_S32;
|
||||
case AUDIO_F32: return AV_SAMPLE_FMT_FLT;
|
||||
default:
|
||||
throw std::runtime_error("unknown audio sample format: " + std::to_string(format));
|
||||
}
|
||||
}
|
||||
|
||||
// IVideoSink implementation
|
||||
private:
|
||||
public:
|
||||
virtual AVPixelFormat getPixelFormat() const noexcept override {
|
||||
return AV_PIX_FMT_YUV420P;
|
||||
}
|
||||
|
||||
virtual int getWidth() const noexcept override {
|
||||
return WINDOW_WIDTH;
|
||||
}
|
||||
|
||||
virtual int getHeight() const noexcept override {
|
||||
return WINDOW_HEIGHT;
|
||||
}
|
||||
|
||||
virtual void drawFrame(void* pixelsData, int pitch) override {
|
||||
std::cout << "drawing frame" << std::endl;
|
||||
SDL_UpdateTexture(_texture.get(), nullptr, pixelsData, pitch);
|
||||
@ -108,55 +61,19 @@ private:
|
||||
}
|
||||
|
||||
virtual void drawPlanarYUVFrame(const void *yPlane, const void *uPlane, const void *vPlane, int yPitch, int uPitch, int vPitch) override {
|
||||
_renderTask = std::packaged_task<void()>([=]{
|
||||
SDL_UpdateYUVTexture(_texture.get(), nullptr, (const uint8_t*)yPlane, yPitch, (const uint8_t*)uPlane, uPitch, (const uint8_t*)vPlane, vPitch);
|
||||
SDL_RenderClear(_renderer.get());
|
||||
SDL_RenderCopy(_renderer.get(), _texture.get(), nullptr, nullptr);
|
||||
SDL_RenderPresent(_renderer.get());
|
||||
});
|
||||
auto future = _renderTask.get_future();
|
||||
|
||||
SDL_Event event;
|
||||
event.type = SDL_USEREVENT;
|
||||
int res = SDL_PushEvent(&event);
|
||||
|
||||
future.get();
|
||||
}
|
||||
|
||||
// IAudioSink implementation
|
||||
private:
|
||||
void setAudioSource(ff::IAudioSource* audioSrc) override {
|
||||
std::cout << "set audio source" << std::endl;
|
||||
_audioSrc = audioSrc;
|
||||
}
|
||||
|
||||
AVSampleFormat getSampleFormat() override {
|
||||
return sdlToFFMpeg(_audioSpec.format);
|
||||
}
|
||||
|
||||
int getChannelsCount() override {
|
||||
return _audioSpec.channels;
|
||||
}
|
||||
|
||||
int getSampleRate() override {
|
||||
return _audioSpec.freq;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(40));
|
||||
}
|
||||
};
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
try {
|
||||
auto wnd = std::make_shared<SDLWindow>();
|
||||
|
||||
ff::Player player(wnd, wnd);
|
||||
ff::Player player(wnd);
|
||||
player.setMedia(argv[1]);
|
||||
player.setVideoSize(WINDOW_WIDTH, WINDOW_HEIGHT);
|
||||
player.play();
|
||||
|
||||
wnd->handleEvents();
|
||||
} catch (...) {
|
||||
std::cout << "exception" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -25,10 +25,10 @@ int main(int argc, char** argv) {
|
||||
AVMediaType packetType = input.packetType(packet);
|
||||
if(packetType == AVMEDIA_TYPE_VIDEO) {
|
||||
auto frame = vDecoder->decode(packet);
|
||||
if(frame->isKeyFrame() && (frame->pts() > 0 || KEY_FRAME_TO_SAVE == 0)) {
|
||||
if(frame.isKeyFrame() && (frame.pts() > 0 || KEY_FRAME_TO_SAVE == 0)) {
|
||||
if(curKeyFrame == KEY_FRAME_TO_SAVE) {
|
||||
frame = scaler.scale(frame);
|
||||
frame->setPictureType(AV_PICTURE_TYPE_NONE);
|
||||
frame.setPictureType(AV_PICTURE_TYPE_NONE);
|
||||
auto encPacket = vEncoder->encode(frame);
|
||||
if(!encPacket) continue;
|
||||
encPacket.setStreamIndex(0);
|
||||
|
||||
@ -24,19 +24,15 @@ namespace ffcpp {
|
||||
private:
|
||||
AVCodec* _codec;
|
||||
AVCodecContext* _codecCtx;
|
||||
mutable FramePtr _tmpFrame;
|
||||
mutable PacketPtr _tmpPacket;
|
||||
|
||||
public:
|
||||
Codec();
|
||||
Codec(AVCodecID codecId, CodecType type, AVCodecParameters* params = nullptr);
|
||||
Codec(AVCodecContext* ctx, CodecType type);
|
||||
Codec(AVCodecContext* ctx, AVCodec* codec);
|
||||
~Codec();
|
||||
|
||||
operator AVCodecContext*() const;
|
||||
|
||||
const AVCodec* nativeCodecPtr() const;
|
||||
|
||||
int width() const;
|
||||
int height() const;
|
||||
AVRational timeBase() const;
|
||||
@ -51,17 +47,10 @@ namespace ffcpp {
|
||||
void setWidth(int width);
|
||||
void setHeight(int height);
|
||||
void setPixelFormat(AVPixelFormat pixelFormat);
|
||||
void setTimeBase(AVRational timeBase);
|
||||
void setSampleFormat(AVSampleFormat sampleFormat);
|
||||
void setGlobalQuality(int quality);
|
||||
void setChannelCount(int channels);
|
||||
void setChannelLayout(uint64_t layout);
|
||||
void setSampleRate(int sampleRate);
|
||||
void setStdCompliance(int compliance);
|
||||
|
||||
std::tuple<FramePtr, bool> decode(PacketPtr packet);
|
||||
Packet encode(FramePtr frame);
|
||||
FramePtr createAudioFrame() const;
|
||||
Frame decode(Packet& packet);
|
||||
Packet encode(AVFrame* frame);
|
||||
Frame createAudioFrame() const;
|
||||
|
||||
public:
|
||||
Codec(Codec&& c) noexcept;
|
||||
|
||||
@ -15,10 +15,10 @@ namespace ffcpp {
|
||||
int _frameSize;
|
||||
public:
|
||||
FifoQueue(AVSampleFormat sampleFormat, int channels, int frameSize);
|
||||
void addSamples(FramePtr frame);
|
||||
void addSamples(const Frame& frame);
|
||||
void addSamples(void** data, int samplesCount);
|
||||
bool enoughSamples() const;
|
||||
void readFrame(FramePtr frame);
|
||||
void readFrame(Frame& frame);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
@ -6,12 +6,8 @@ extern "C" {
|
||||
#include <libavutil/imgutils.h>
|
||||
}
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
typedef std::shared_ptr<class Frame> FramePtr;
|
||||
|
||||
class Frame {
|
||||
private:
|
||||
uint8_t* _buffer;
|
||||
@ -27,7 +23,6 @@ namespace ffcpp {
|
||||
Frame& operator=(Frame&& frame);
|
||||
operator AVFrame*();
|
||||
operator const AVFrame*() const;
|
||||
AVFrame* nativePtr();
|
||||
|
||||
void guessPts();
|
||||
void setPictureType(AVPictureType type);
|
||||
@ -35,8 +30,6 @@ namespace ffcpp {
|
||||
void setPts(int pts);
|
||||
bool isKeyFrame() const;
|
||||
int pts() const;
|
||||
void guessChannelLayout();
|
||||
int size() const;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
@ -11,10 +11,7 @@ extern "C" {
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifndef _MSC_VER
|
||||
#include <bits/shared_ptr.h>
|
||||
#endif
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
@ -40,8 +37,8 @@ namespace ffcpp {
|
||||
StreamPtr audioStream(size_t index = 0);
|
||||
StreamPtr addVideoStream(AVCodecID codecID, int width, int height, AVRational timeBase, AVPixelFormat pixelFormat = AV_PIX_FMT_NONE);
|
||||
StreamPtr addAudioStream(AVCodecID codecID, int channels, int sampleRate, AVSampleFormat sampleFormat = AV_SAMPLE_FMT_NONE);
|
||||
PacketPtr readPacket();
|
||||
AVMediaType packetType(const PacketPtr packet);
|
||||
Packet readPacket();
|
||||
AVMediaType packetType(const Packet& packet);
|
||||
|
||||
void writeHeader();
|
||||
void writeTrailer();
|
||||
|
||||
@ -5,12 +5,8 @@ extern "C" {
|
||||
#include <libavformat/avformat.h>
|
||||
}
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
typedef std::shared_ptr<class Packet> PacketPtr;
|
||||
|
||||
class Packet {
|
||||
private:
|
||||
AVPacket _packet;
|
||||
|
||||
@ -2,87 +2,44 @@
|
||||
#define PROJECT_PLAYER_H
|
||||
|
||||
#include "ffcpp/MediaFile.h"
|
||||
#include "ffcpp/Scaler.h"
|
||||
#include "TSQueue.h"
|
||||
#include "Resampler.h"
|
||||
#include "readerwriterqueue.h"
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <condition_variable>
|
||||
#include <mutex>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
struct IVideoSink {
|
||||
virtual AVPixelFormat getPixelFormat() const noexcept = 0;
|
||||
virtual int getWidth() const noexcept = 0;
|
||||
virtual int getHeight() const noexcept = 0;
|
||||
virtual void drawFrame(void* pixelsData, int pitch) = 0;
|
||||
virtual void drawPlanarYUVFrame(const void *yPlane, const void *uPlane, const void *vPlane, int yPitch,
|
||||
int uPitch, int vPitch) = 0;
|
||||
};
|
||||
|
||||
struct IAudioSource {
|
||||
virtual void fillSampleBuffer(uint8_t *data, int length) = 0;
|
||||
};
|
||||
|
||||
struct IAudioSink {
|
||||
virtual void setAudioSource(IAudioSource* audioSrc) = 0;
|
||||
virtual AVSampleFormat getSampleFormat() = 0;
|
||||
virtual int getChannelsCount() = 0;
|
||||
virtual int getSampleRate() = 0;
|
||||
};
|
||||
|
||||
enum class PlayerState {
|
||||
Shutdown,
|
||||
Stopped,
|
||||
Playing,
|
||||
Paused
|
||||
};
|
||||
|
||||
class Player: private IAudioSource {
|
||||
private:
|
||||
static constexpr size_t AUDIO_BUFFER_LENGTH = 16*1024;
|
||||
|
||||
private:
|
||||
typedef moodycamel::ReaderWriterQueue<FramePtr> FrameQueue;
|
||||
|
||||
class Player {
|
||||
private:
|
||||
std::shared_ptr<IVideoSink> _vSink;
|
||||
std::shared_ptr<IAudioSink> _aSink;
|
||||
std::unique_ptr<MediaFile> _curMedia;
|
||||
StreamPtr _aStream;
|
||||
StreamPtr _vStream;
|
||||
ScalerPtr _scaler;
|
||||
ResamplerPtr _resampler;
|
||||
std::thread _decodeThread;
|
||||
PlayerState _state;
|
||||
|
||||
std::unique_ptr<uint8_t[]> _aSamplesBuffer;
|
||||
int _samplesInBuffer;
|
||||
FILE* _asFile;
|
||||
|
||||
std::mutex _mutex;
|
||||
std::condition_variable _stateCond;
|
||||
FrameQueue _videoFrames;
|
||||
FrameQueue _audioFrames;
|
||||
std::thread _decodeThread;
|
||||
std::thread _vPlayThread;
|
||||
|
||||
public:
|
||||
Player(std::shared_ptr<IVideoSink> vSink, std::shared_ptr<IAudioSink> aSink);
|
||||
Player(std::shared_ptr<IVideoSink> vSink);
|
||||
~Player();
|
||||
|
||||
void setMedia(std::string path);
|
||||
void setVideoSize(size_t width, size_t height);
|
||||
void play();
|
||||
|
||||
private:
|
||||
void decode();
|
||||
void displayFrames();
|
||||
void processFrame(FramePtr frame, AVMediaType type, FrameQueue* queue);
|
||||
|
||||
private:
|
||||
void fillSampleBuffer(uint8_t *data, int length) override;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
@ -10,23 +10,20 @@ extern "C" {
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
typedef std::shared_ptr<class Resampler> ResamplerPtr;
|
||||
|
||||
class Resampler {
|
||||
private:
|
||||
SwrContext* _swrContext;
|
||||
int _dstChannelCount;
|
||||
int _dstChannelLayout;
|
||||
AVSampleFormat _dstSampleFormat;
|
||||
int _dstSampleRate;
|
||||
|
||||
public:
|
||||
Resampler(int inChannelCount, int inChannelLayout, int inSampleRate, AVSampleFormat inSampleFormat,
|
||||
int outChannelCount, int outChannelLayout, int outSampleRate, AVSampleFormat outSampleFormat);
|
||||
Resampler(int inChannelLayout, int inSampleRate, AVSampleFormat inSampleFormat,
|
||||
int outChannelLayout, int outSampleRate, AVSampleFormat outSampleFormat);
|
||||
Resampler(CodecPtr decoder, CodecPtr encoder);
|
||||
~Resampler();
|
||||
|
||||
FramePtr resample(FramePtr inFrame);
|
||||
Frame resample(Frame& inFrame);
|
||||
static bool needResampling(CodecPtr decoder, CodecPtr encoder);
|
||||
};
|
||||
|
||||
|
||||
@ -10,8 +10,6 @@ extern "C" {
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
typedef std::shared_ptr<class Scaler> ScalerPtr;
|
||||
|
||||
class Scaler {
|
||||
private:
|
||||
SwsContext* _swsContext;
|
||||
@ -22,7 +20,7 @@ namespace ffcpp {
|
||||
public:
|
||||
Scaler(int srcWidth, int srcHeight, AVPixelFormat srcPixFmt, int dstWidth, int dstHeight, AVPixelFormat dstPixFmt);
|
||||
Scaler(CodecPtr decoder, CodecPtr encoder);
|
||||
FramePtr scale(FramePtr inFrame);
|
||||
Frame scale(Frame& inFrame);
|
||||
static bool needScaling(CodecPtr decoder, CodecPtr encoder);
|
||||
};
|
||||
|
||||
|
||||
@ -21,13 +21,12 @@ namespace ffcpp {
|
||||
public:
|
||||
Stream();
|
||||
Stream(AVStream* stream);
|
||||
Stream(AVStream* stream, CodecPtr codec);
|
||||
Stream(AVStream* stream, AVCodec* encoder);
|
||||
operator AVStream*() const;
|
||||
CodecPtr codec();
|
||||
|
||||
AVRational timeBase() const;
|
||||
void setTimeBase(AVRational timeBase);
|
||||
float fps() const;
|
||||
|
||||
public:
|
||||
Stream(Stream&& stream) noexcept;
|
||||
|
||||
@ -45,22 +45,11 @@ namespace ffcpp {
|
||||
_readCond.notify_one();
|
||||
}
|
||||
|
||||
|
||||
void pushOrWait(std::shared_ptr<T> value) {
|
||||
std::unique_lock<std::mutex> lock(_mutex);
|
||||
if(_queue.size() == _maxSize) {
|
||||
_writeCond.wait(lock, [this]{ return _queue.size() < _maxSize; });
|
||||
}
|
||||
_queue.push(value);
|
||||
_readCond.notify_one();
|
||||
}
|
||||
|
||||
std::shared_ptr<T> waitAndPop() {
|
||||
std::unique_lock<std::mutex> lock(_mutex);
|
||||
_readCond.wait(lock, [this]{ return !_queue.empty(); });
|
||||
auto res = _queue.front();
|
||||
_queue.pop();
|
||||
_writeCond.notify_one();
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -70,7 +59,6 @@ namespace ffcpp {
|
||||
return std::shared_ptr<T>();
|
||||
auto res = _queue.front();
|
||||
_queue.pop();
|
||||
_writeCond.notify_one();
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -81,7 +69,6 @@ namespace ffcpp {
|
||||
}
|
||||
auto res = _queue.front();
|
||||
_queue.pop();
|
||||
_writeCond.notify_one();
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
@ -1,665 +0,0 @@
|
||||
// ©2013-2016 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, embedded below).
|
||||
|
||||
#pragma once
|
||||
|
||||
// Provides portable (VC++2010+, Intel ICC 13, GCC 4.7+, and anything C++11 compliant) implementation
|
||||
// of low-level memory barriers, plus a few semi-portable utility macros (for inlining and alignment).
|
||||
// Also has a basic atomic type (limited to hardware-supported atomics with no memory ordering guarantees).
|
||||
// Uses the AE_* prefix for macros (historical reasons), and the "moodycamel" namespace for symbols.
|
||||
|
||||
#include <cassert>
|
||||
#include <type_traits>
|
||||
#include <cerrno>
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
|
||||
// Platform detection
|
||||
#if defined(__INTEL_COMPILER)
|
||||
#define AE_ICC
|
||||
#elif defined(_MSC_VER)
|
||||
#define AE_VCPP
|
||||
#elif defined(__GNUC__)
|
||||
#define AE_GCC
|
||||
#endif
|
||||
|
||||
#if defined(_M_IA64) || defined(__ia64__)
|
||||
#define AE_ARCH_IA64
|
||||
#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__)
|
||||
#define AE_ARCH_X64
|
||||
#elif defined(_M_IX86) || defined(__i386__)
|
||||
#define AE_ARCH_X86
|
||||
#elif defined(_M_PPC) || defined(__powerpc__)
|
||||
#define AE_ARCH_PPC
|
||||
#else
|
||||
#define AE_ARCH_UNKNOWN
|
||||
#endif
|
||||
|
||||
|
||||
// AE_UNUSED
|
||||
#define AE_UNUSED(x) ((void)x)
|
||||
|
||||
|
||||
// AE_FORCEINLINE
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_FORCEINLINE __forceinline
|
||||
#elif defined(AE_GCC)
|
||||
//#define AE_FORCEINLINE __attribute__((always_inline))
|
||||
#define AE_FORCEINLINE inline
|
||||
#else
|
||||
#define AE_FORCEINLINE inline
|
||||
#endif
|
||||
|
||||
|
||||
// AE_ALIGN
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_ALIGN(x) __declspec(align(x))
|
||||
#elif defined(AE_GCC)
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#else
|
||||
// Assume GCC compliant syntax...
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#endif
|
||||
|
||||
|
||||
// Portable atomic fences implemented below:
|
||||
|
||||
namespace moodycamel {
|
||||
|
||||
enum memory_order {
|
||||
memory_order_relaxed,
|
||||
memory_order_acquire,
|
||||
memory_order_release,
|
||||
memory_order_acq_rel,
|
||||
memory_order_seq_cst,
|
||||
|
||||
// memory_order_sync: Forces a full sync:
|
||||
// #LoadLoad, #LoadStore, #StoreStore, and most significantly, #StoreLoad
|
||||
memory_order_sync = memory_order_seq_cst
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || defined(AE_ICC)
|
||||
// VS2010 and ICC13 don't support std::atomic_*_fence, implement our own fences
|
||||
|
||||
#include <intrin.h>
|
||||
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
#define AeFullSync _mm_mfence
|
||||
#define AeLiteSync _mm_mfence
|
||||
#elif defined(AE_ARCH_IA64)
|
||||
#define AeFullSync __mf
|
||||
#define AeLiteSync __mf
|
||||
#elif defined(AE_ARCH_PPC)
|
||||
#include <ppcintrinsics.h>
|
||||
#define AeFullSync __sync
|
||||
#define AeLiteSync __lwsync
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4365) // Disable erroneous 'conversion from long to unsigned int, signed/unsigned mismatch' error when using `assert`
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(push, off)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace moodycamel {
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order)
|
||||
{
|
||||
switch (order) {
|
||||
case memory_order_relaxed: break;
|
||||
case memory_order_acquire: _ReadBarrier(); break;
|
||||
case memory_order_release: _WriteBarrier(); break;
|
||||
case memory_order_acq_rel: _ReadWriteBarrier(); break;
|
||||
case memory_order_seq_cst: _ReadWriteBarrier(); break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
// x86/x64 have a strong memory model -- all loads and stores have
|
||||
// acquire and release semantics automatically (so only need compiler
|
||||
// barriers for those).
|
||||
#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64)
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
switch (order) {
|
||||
case memory_order_relaxed: break;
|
||||
case memory_order_acquire: _ReadBarrier(); break;
|
||||
case memory_order_release: _WriteBarrier(); break;
|
||||
case memory_order_acq_rel: _ReadWriteBarrier(); break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
#else
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
// Non-specialized arch, use heavier memory barriers everywhere just in case :-(
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
AeLiteSync();
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
AeLiteSync();
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
AeLiteSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} // end namespace moodycamel
|
||||
#else
|
||||
// Use standard library of atomics
|
||||
#include <atomic>
|
||||
|
||||
namespace moodycamel {
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order)
|
||||
{
|
||||
switch (order) {
|
||||
case memory_order_relaxed: break;
|
||||
case memory_order_acquire: std::atomic_signal_fence(std::memory_order_acquire); break;
|
||||
case memory_order_release: std::atomic_signal_fence(std::memory_order_release); break;
|
||||
case memory_order_acq_rel: std::atomic_signal_fence(std::memory_order_acq_rel); break;
|
||||
case memory_order_seq_cst: std::atomic_signal_fence(std::memory_order_seq_cst); break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
AE_FORCEINLINE void fence(memory_order order)
|
||||
{
|
||||
switch (order) {
|
||||
case memory_order_relaxed: break;
|
||||
case memory_order_acquire: std::atomic_thread_fence(std::memory_order_acquire); break;
|
||||
case memory_order_release: std::atomic_thread_fence(std::memory_order_release); break;
|
||||
case memory_order_acq_rel: std::atomic_thread_fence(std::memory_order_acq_rel); break;
|
||||
case memory_order_seq_cst: std::atomic_thread_fence(std::memory_order_seq_cst); break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli))
|
||||
#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#endif
|
||||
|
||||
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#include <atomic>
|
||||
#endif
|
||||
#include <utility>
|
||||
|
||||
// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY:
|
||||
// Provides basic support for atomic variables -- no memory ordering guarantees are provided.
|
||||
// The guarantee of atomicity is only made for types that already have atomic load and store guarantees
|
||||
// at the hardware level -- on most platforms this generally means aligned pointers and integers (only).
|
||||
namespace moodycamel {
|
||||
template<typename T>
|
||||
class weak_atomic
|
||||
{
|
||||
public:
|
||||
weak_atomic() { }
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
|
||||
#endif
|
||||
template<typename U> weak_atomic(U&& x) : value(std::forward<U>(x)) { }
|
||||
#ifdef __cplusplus_cli
|
||||
// Work around bug with universal reference/nullptr combination that only appears when /clr is on
|
||||
weak_atomic(nullptr_t) : value(nullptr) { }
|
||||
#endif
|
||||
weak_atomic(weak_atomic const& other) : value(other.value) { }
|
||||
weak_atomic(weak_atomic&& other) : value(std::move(other.value)) { }
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
AE_FORCEINLINE operator T() const { return load(); }
|
||||
|
||||
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
template<typename U> AE_FORCEINLINE weak_atomic const& operator=(U&& x) { value = std::forward<U>(x); return *this; }
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) { value = other.value; return *this; }
|
||||
|
||||
AE_FORCEINLINE T load() const { return value; }
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment)
|
||||
{
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment)
|
||||
{
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
#else
|
||||
template<typename U>
|
||||
AE_FORCEINLINE weak_atomic const& operator=(U&& x)
|
||||
{
|
||||
value.store(std::forward<U>(x), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other)
|
||||
{
|
||||
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T load() const { return value.load(std::memory_order_relaxed); }
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment)
|
||||
{
|
||||
return value.fetch_add(increment, std::memory_order_acquire);
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment)
|
||||
{
|
||||
return value.fetch_add(increment, std::memory_order_release);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
private:
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
// No std::atomic support, but still need to circumvent compiler optimizations.
|
||||
// `volatile` will make memory access slow, but is guaranteed to be reliable.
|
||||
volatile T value;
|
||||
#else
|
||||
std::atomic<T> value;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
|
||||
|
||||
// Portable single-producer, single-consumer semaphore below:
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
// Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
namespace spsc_sema
|
||||
{
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
WaitForSingleObject(m_hSema, infinite);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
|
||||
return WaitForSingleObject(m_hSema, 0) != RC_WAIT_TIMEOUT;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) != RC_WAIT_TIMEOUT;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
ReleaseSemaphore(m_hSema, count, nullptr);
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
semaphore_wait(m_sema);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = timeout_usecs / 1000000;
|
||||
ts.tv_nsec = (timeout_usecs % 1000000) * 1000;
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
|
||||
return rc != KERN_OPERATION_TIMED_OUT;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
semaphore_signal(m_sema);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
semaphore_signal(m_sema);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
sem_init(&m_sema, 0, initialCount);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do
|
||||
{
|
||||
rc = sem_wait(&m_sema);
|
||||
}
|
||||
while (rc == -1 && errno == EINTR);
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return !(rc == -1 && errno == EAGAIN);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
ts.tv_sec += usecs / usecs_in_1_sec;
|
||||
ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return !(rc == -1 && errno == ETIMEDOUT);
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
sem_post(&m_sema);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
sem_post(&m_sema);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
weak_atomic<ssize_t> m_count;
|
||||
Semaphore m_sema;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
// Is there a better way to set the initial spin count?
|
||||
// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
|
||||
// as threads start hitting the kernel semaphore.
|
||||
int spin = 10000;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
if (m_count.load() > 0)
|
||||
{
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
compiler_fence(memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
m_sema.wait();
|
||||
return true;
|
||||
}
|
||||
if (m_sema.timed_wait(timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.fetch_add_release(1);
|
||||
if (oldCount < 0)
|
||||
return false; // successfully restored things to the way they were
|
||||
// Oh, the producer thread just signaled the semaphore after all. Try again:
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0 && m_sema.try_wait())
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
if (m_count.load() > 0)
|
||||
{
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void wait()
|
||||
{
|
||||
if (!tryWait())
|
||||
waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add_release(count);
|
||||
assert(oldCount >= -1);
|
||||
if (oldCount < 0)
|
||||
{
|
||||
m_sema.signal(1);
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load();
|
||||
return count > 0 ? count : 0;
|
||||
}
|
||||
};
|
||||
} // end namespace spsc_sema
|
||||
} // end namespace moodycamel
|
||||
|
||||
#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))
|
||||
#pragma warning(pop)
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(pop)
|
||||
#endif
|
||||
#endif
|
||||
@ -1,854 +0,0 @@
|
||||
// ©2013-2016 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "atomicops.h"
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
#include <new>
|
||||
#include <cstdint>
|
||||
#include <cstdlib> // For malloc/free/abort & size_t
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012
|
||||
#include <chrono>
|
||||
#endif
|
||||
|
||||
|
||||
// A lock-free queue for a single-consumer, single-producer architecture.
|
||||
// The queue is also wait-free in the common path (except if more memory
|
||||
// needs to be allocated, in which case malloc is called).
|
||||
// Allocates memory sparingly (O(lg(n) times, amortized), and only once if
|
||||
// the original maximum size estimate is never exceeded.
|
||||
// Tested on x86/x64 processors, but semantics should be correct for all
|
||||
// architectures (given the right implementations in atomicops.h), provided
|
||||
// that aligned integer and pointer accesses are naturally atomic.
|
||||
// Note that there should only be one consumer thread and producer thread;
|
||||
// Switching roles of the threads, or using multiple consecutive threads for
|
||||
// one role, is not safe unless properly synchronized.
|
||||
// Using the queue exclusively from one thread is fine, though a bit silly.
|
||||
|
||||
#ifndef MOODYCAMEL_CACHE_LINE_SIZE
|
||||
#define MOODYCAMEL_CACHE_LINE_SIZE 64
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || (!defined(_MSC_VER) && !defined(__GNUC__))
|
||||
#define MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4324) // structure was padded due to __declspec(align())
|
||||
#pragma warning(disable: 4820) // padding was added
|
||||
#pragma warning(disable: 4127) // conditional expression is constant
|
||||
#endif
|
||||
|
||||
namespace moodycamel {
|
||||
|
||||
template<typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class ReaderWriterQueue
|
||||
{
|
||||
// Design: Based on a queue-of-queues. The low-level queues are just
|
||||
// circular buffers with front and tail indices indicating where the
|
||||
// next element to dequeue is and where the next element can be enqueued,
|
||||
// respectively. Each low-level queue is called a "block". Each block
|
||||
// wastes exactly one element's worth of space to keep the design simple
|
||||
// (if front == tail then the queue is empty, and can't be full).
|
||||
// The high-level queue is a circular linked list of blocks; again there
|
||||
// is a front and tail, but this time they are pointers to the blocks.
|
||||
// The front block is where the next element to be dequeued is, provided
|
||||
// the block is not empty. The back block is where elements are to be
|
||||
// enqueued, provided the block is not full.
|
||||
// The producer thread owns all the tail indices/pointers. The consumer
|
||||
// thread owns all the front indices/pointers. Both threads read each
|
||||
// other's variables, but only the owning thread updates them. E.g. After
|
||||
// the consumer reads the producer's tail, the tail may change before the
|
||||
// consumer is done dequeuing an object, but the consumer knows the tail
|
||||
// will never go backwards, only forwards.
|
||||
// If there is no room to enqueue an object, an additional block (of
|
||||
// equal size to the last block) is added. Blocks are never removed.
|
||||
|
||||
public:
|
||||
// Constructs a queue that can hold maxSize elements without further
|
||||
// allocations. If more than MAX_BLOCK_SIZE elements are requested,
|
||||
// then several blocks of MAX_BLOCK_SIZE each are reserved (including
|
||||
// at least one extra buffer block).
|
||||
explicit ReaderWriterQueue(size_t maxSize = 15)
|
||||
#ifndef NDEBUG
|
||||
: enqueuing(false)
|
||||
,dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
assert(maxSize > 0);
|
||||
assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2");
|
||||
assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2");
|
||||
|
||||
Block* firstBlock = nullptr;
|
||||
|
||||
largestBlockSize = ceilToPow2(maxSize + 1); // We need a spare slot to fit maxSize elements in the block
|
||||
if (largestBlockSize > MAX_BLOCK_SIZE * 2) {
|
||||
// We need a spare block in case the producer is writing to a different block the consumer is reading from, and
|
||||
// wants to enqueue the maximum number of elements. We also need a spare element in each block to avoid the ambiguity
|
||||
// between front == tail meaning "empty" and "full".
|
||||
// So the effective number of slots that are guaranteed to be usable at any time is the block size - 1 times the
|
||||
// number of blocks - 1. Solving for maxSize and applying a ceiling to the division gives us (after simplifying):
|
||||
size_t initialBlockCount = (maxSize + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1);
|
||||
largestBlockSize = MAX_BLOCK_SIZE;
|
||||
Block* lastBlock = nullptr;
|
||||
for (size_t i = 0; i != initialBlockCount; ++i) {
|
||||
auto block = make_block(largestBlockSize);
|
||||
if (block == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
if (firstBlock == nullptr) {
|
||||
firstBlock = block;
|
||||
}
|
||||
else {
|
||||
lastBlock->next = block;
|
||||
}
|
||||
lastBlock = block;
|
||||
block->next = firstBlock;
|
||||
}
|
||||
}
|
||||
else {
|
||||
firstBlock = make_block(largestBlockSize);
|
||||
if (firstBlock == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
firstBlock->next = firstBlock;
|
||||
}
|
||||
frontBlock = firstBlock;
|
||||
tailBlock = firstBlock;
|
||||
|
||||
// Make sure the reader/writer threads will have the initialized memory setup above:
|
||||
fence(memory_order_sync);
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
ReaderWriterQueue(ReaderWriterQueue&& other)
|
||||
: frontBlock(other.frontBlock.load()),
|
||||
tailBlock(other.tailBlock.load()),
|
||||
largestBlockSize(other.largestBlockSize)
|
||||
#ifndef NDEBUG
|
||||
,enqueuing(false)
|
||||
,dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
other.largestBlockSize = 32;
|
||||
Block* b = other.make_block(other.largestBlockSize);
|
||||
if (b == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
b->next = b;
|
||||
other.frontBlock = b;
|
||||
other.tailBlock = b;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue&& other)
|
||||
{
|
||||
Block* b = frontBlock.load();
|
||||
frontBlock = other.frontBlock.load();
|
||||
other.frontBlock = b;
|
||||
b = tailBlock.load();
|
||||
tailBlock = other.tailBlock.load();
|
||||
other.tailBlock = b;
|
||||
std::swap(largestBlockSize, other.largestBlockSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being deleted. It's up to the user to synchronize this.
|
||||
~ReaderWriterQueue()
|
||||
{
|
||||
// Make sure we get the latest version of all variables from other CPUs:
|
||||
fence(memory_order_sync);
|
||||
|
||||
// Destroy any remaining objects in queue and free memory
|
||||
Block* frontBlock_ = frontBlock;
|
||||
Block* block = frontBlock_;
|
||||
do {
|
||||
Block* nextBlock = block->next;
|
||||
size_t blockFront = block->front;
|
||||
size_t blockTail = block->tail;
|
||||
|
||||
for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) {
|
||||
auto element = reinterpret_cast<T*>(block->data + i * sizeof(T));
|
||||
element->~T();
|
||||
(void)element;
|
||||
}
|
||||
|
||||
auto rawBlock = block->rawThis;
|
||||
block->~Block();
|
||||
std::free(rawBlock);
|
||||
block = nextBlock;
|
||||
} while (block != frontBlock_);
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element)
|
||||
{
|
||||
return inner_enqueue<CannotAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element)
|
||||
{
|
||||
return inner_enqueue<CannotAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element)
|
||||
{
|
||||
return inner_enqueue<CanAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element)
|
||||
{
|
||||
return inner_enqueue<CanAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template<typename U>
|
||||
bool try_dequeue(U& result)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode:
|
||||
// Remember where the tail block is
|
||||
// If the front block has an element in it, dequeue it
|
||||
// Else
|
||||
// If front block was the tail block when we entered the function, return false
|
||||
// Else advance to next block and dequeue the item there
|
||||
|
||||
// Note that we have to use the value of the tail block from before we check if the front
|
||||
// block is full or not, in case the front block is empty and then, before we check if the
|
||||
// tail block is at the front block or not, the producer fills up the front block *and
|
||||
// moves on*, which would make us skip a filled block. Seems unlikely, but was consistently
|
||||
// reproducible in practice.
|
||||
// In order to avoid overhead in the common case, though, we do a double-checked pattern
|
||||
// where we have the fast path if the front block is not empty, then read the tail block,
|
||||
// then re-read the front block and check if it's not empty again, then check if the tail
|
||||
// block has advanced.
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
// Front block not empty, dequeue from here
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
// Oh look, the front block isn't empty after all
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
// Don't need an acquire fence here since next can only ever be set on the tailBlock,
|
||||
// and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which
|
||||
// ensures next is up-to-date on this CPU in case we recently were at tailBlock.
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// Since the tailBlock is only ever advanced after being written to,
|
||||
// we know there's for sure an element to dequeue on it
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
// We're done with this block, let the producer use it if it needs
|
||||
fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release); // Not strictly needed
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
}
|
||||
else {
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
T* peek()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
non_empty_front_block:
|
||||
return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlock->tail.load());
|
||||
return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T));
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
bool pop()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
}
|
||||
else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release);
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
}
|
||||
else {
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
inline size_t size_approx() const
|
||||
{
|
||||
size_t result = 0;
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
Block* block = frontBlock_;
|
||||
do {
|
||||
fence(memory_order_acquire);
|
||||
size_t blockFront = block->front.load();
|
||||
size_t blockTail = block->tail.load();
|
||||
result += (blockTail - blockFront) & block->sizeMask;
|
||||
block = block->next.load();
|
||||
} while (block != frontBlock_);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
enum AllocationMode { CanAlloc, CannotAlloc };
|
||||
|
||||
template<AllocationMode canAlloc, typename U>
|
||||
bool inner_enqueue(U&& element)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->enqueuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode (assuming we're allowed to alloc a new block):
|
||||
// If room in tail block, add to tail
|
||||
// Else check next block
|
||||
// If next block is not the head block, enqueue on next block
|
||||
// Else create a new block and enqueue there
|
||||
// Advance tail to the block we just enqueued to
|
||||
|
||||
Block* tailBlock_ = tailBlock.load();
|
||||
size_t blockFront = tailBlock_->localFront;
|
||||
size_t blockTail = tailBlock_->tail.load();
|
||||
|
||||
size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask;
|
||||
if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) {
|
||||
fence(memory_order_acquire);
|
||||
// This block has room for at least one more element
|
||||
char* location = tailBlock_->data + blockTail * sizeof(T);
|
||||
new (location) T(std::forward<U>(element));
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock_->tail = nextBlockTail;
|
||||
}
|
||||
else {
|
||||
fence(memory_order_acquire);
|
||||
if (tailBlock_->next.load() != frontBlock) {
|
||||
// Note that the reason we can't advance to the frontBlock and start adding new entries there
|
||||
// is because if we did, then dequeue would stay in that block, eventually reading the new values,
|
||||
// instead of advancing to the next full block (whose values were enqueued first and so should be
|
||||
// consumed first).
|
||||
|
||||
fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock
|
||||
|
||||
// tailBlock is full, but there's a free block ahead, use it
|
||||
Block* tailBlockNext = tailBlock_->next.load();
|
||||
size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load();
|
||||
nextBlockTail = tailBlockNext->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// This block must be empty since it's not the head block and we
|
||||
// go through the blocks in a circle
|
||||
assert(nextBlockFront == nextBlockTail);
|
||||
tailBlockNext->localFront = nextBlockFront;
|
||||
|
||||
char* location = tailBlockNext->data + nextBlockTail * sizeof(T);
|
||||
new (location) T(std::forward<U>(element));
|
||||
|
||||
tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = tailBlockNext;
|
||||
}
|
||||
else if (canAlloc == CanAlloc) {
|
||||
// tailBlock is full and there's no free block ahead; create a new block
|
||||
auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2;
|
||||
auto newBlock = make_block(newBlockSize);
|
||||
if (newBlock == nullptr) {
|
||||
// Could not allocate a block!
|
||||
return false;
|
||||
}
|
||||
largestBlockSize = newBlockSize;
|
||||
|
||||
new (newBlock->data) T(std::forward<U>(element));
|
||||
|
||||
assert(newBlock->front == 0);
|
||||
newBlock->tail = newBlock->localTail = 1;
|
||||
|
||||
newBlock->next = tailBlock_->next.load();
|
||||
tailBlock_->next = newBlock;
|
||||
|
||||
// Might be possible for the dequeue thread to see the new tailBlock->next
|
||||
// *without* seeing the new tailBlock value, but this is OK since it can't
|
||||
// advance to the next block until tailBlock is set anyway (because the only
|
||||
// case where it could try to read the next is if it's already at the tailBlock,
|
||||
// and it won't advance past tailBlock in any circumstance).
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = newBlock;
|
||||
}
|
||||
else if (canAlloc == CannotAlloc) {
|
||||
// Would have had to allocate a new block to enqueue, but not allowed
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
assert(false && "Should be unreachable code");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Disable copying
|
||||
ReaderWriterQueue(ReaderWriterQueue const&) { }
|
||||
|
||||
// Disable assignment
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue const&) { }
|
||||
|
||||
|
||||
|
||||
AE_FORCEINLINE static size_t ceilToPow2(size_t x)
|
||||
{
|
||||
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
||||
--x;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
for (size_t i = 1; i < sizeof(size_t); i <<= 1) {
|
||||
x |= x >> (i << 3);
|
||||
}
|
||||
++x;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
static AE_FORCEINLINE char* align_for(char* ptr)
|
||||
{
|
||||
const std::size_t alignment = std::alignment_of<U>::value;
|
||||
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
|
||||
}
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
struct ReentrantGuard
|
||||
{
|
||||
ReentrantGuard(bool& _inSection)
|
||||
: inSection(_inSection)
|
||||
{
|
||||
assert(!inSection && "ReaderWriterQueue does not support enqueuing or dequeuing elements from other elements' ctors and dtors");
|
||||
inSection = true;
|
||||
}
|
||||
|
||||
~ReentrantGuard() { inSection = false; }
|
||||
|
||||
private:
|
||||
ReentrantGuard& operator=(ReentrantGuard const&);
|
||||
|
||||
private:
|
||||
bool& inSection;
|
||||
};
|
||||
#endif
|
||||
|
||||
struct Block
|
||||
{
|
||||
// Avoid false-sharing by putting highly contended variables on their own cache lines
|
||||
weak_atomic<size_t> front; // (Atomic) Elements are read from here
|
||||
size_t localTail; // An uncontended shadow copy of tail, owned by the consumer
|
||||
|
||||
char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)];
|
||||
weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here
|
||||
size_t localFront;
|
||||
|
||||
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is)
|
||||
weak_atomic<Block*> next; // (Atomic)
|
||||
|
||||
char* data; // Contents (on heap) are aligned to T's alignment
|
||||
|
||||
const size_t sizeMask;
|
||||
|
||||
|
||||
// size must be a power of two (and greater than 0)
|
||||
Block(size_t const& _size, char* _rawThis, char* _data)
|
||||
: front(0), localTail(0), tail(0), localFront(0), next(nullptr), data(_data), sizeMask(_size - 1), rawThis(_rawThis)
|
||||
{
|
||||
}
|
||||
|
||||
private:
|
||||
// C4512 - Assignment operator could not be generated
|
||||
Block& operator=(Block const&);
|
||||
|
||||
public:
|
||||
char* rawThis;
|
||||
};
|
||||
|
||||
|
||||
static Block* make_block(size_t capacity)
|
||||
{
|
||||
// Allocate enough memory for the block itself, as well as all the elements it will contain
|
||||
auto size = sizeof(Block) + std::alignment_of<Block>::value - 1;
|
||||
size += sizeof(T) * capacity + std::alignment_of<T>::value - 1;
|
||||
auto newBlockRaw = static_cast<char*>(std::malloc(size));
|
||||
if (newBlockRaw == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto newBlockAligned = align_for<Block>(newBlockRaw);
|
||||
auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block));
|
||||
return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData);
|
||||
}
|
||||
|
||||
private:
|
||||
weak_atomic<Block*> frontBlock; // (Atomic) Elements are enqueued to this block
|
||||
|
||||
char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)];
|
||||
weak_atomic<Block*> tailBlock; // (Atomic) Elements are dequeued from this block
|
||||
|
||||
size_t largestBlockSize;
|
||||
|
||||
#ifndef NDEBUG
|
||||
bool enqueuing;
|
||||
bool dequeuing;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Like ReaderWriterQueue, but also providees blocking operations
|
||||
template<typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class BlockingReaderWriterQueue
|
||||
{
|
||||
private:
|
||||
typedef ::moodycamel::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue;
|
||||
|
||||
public:
|
||||
explicit BlockingReaderWriterQueue(size_t maxSize = 15)
|
||||
: inner(maxSize)
|
||||
{ }
|
||||
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element)
|
||||
{
|
||||
if (inner.try_enqueue(element)) {
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element)
|
||||
{
|
||||
if (inner.try_enqueue(std::forward<T>(element))) {
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element)
|
||||
{
|
||||
if (inner.enqueue(element)) {
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element)
|
||||
{
|
||||
if (inner.enqueue(std::forward<T>(element))) {
|
||||
sema.signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template<typename U>
|
||||
bool try_dequeue(U& result)
|
||||
{
|
||||
if (sema.tryWait()) {
|
||||
bool success = inner.try_dequeue(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available, then dequeues it.
|
||||
template<typename U>
|
||||
void wait_dequeue(U& result)
|
||||
{
|
||||
sema.wait();
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template<typename U>
|
||||
bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema.wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& result, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(result, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
AE_FORCEINLINE T* peek()
|
||||
{
|
||||
return inner.peek();
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
AE_FORCEINLINE bool pop()
|
||||
{
|
||||
if (sema.tryWait()) {
|
||||
bool result = inner.pop();
|
||||
assert(result);
|
||||
AE_UNUSED(result);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
AE_FORCEINLINE size_t size_approx() const
|
||||
{
|
||||
return sema.availableApprox();
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
// Disable copying & assignment
|
||||
BlockingReaderWriterQueue(ReaderWriterQueue const&) { }
|
||||
BlockingReaderWriterQueue& operator=(ReaderWriterQueue const&) { }
|
||||
|
||||
private:
|
||||
ReaderWriterQueue inner;
|
||||
spsc_sema::LightweightSemaphore sema;
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
@ -1,7 +1,9 @@
|
||||
project(ffcpp)
|
||||
|
||||
find_package(FFMPEG REQUIRED)
|
||||
include_directories(${FFMPEG_INCLUDE_DIR})
|
||||
# FIXME: FFMPEG_INCLUDE_DIR is incorrect and causes errors
|
||||
# http://stackoverflow.com/questions/35982639/ctime-std-namespace-conflict
|
||||
#include_directories(${FFMPEG_INCLUDE_DIR})
|
||||
link_directories(${FFMPEG_LIBRARY_DIRS})
|
||||
|
||||
if(NOT FFMPEG_FOUND)
|
||||
@ -28,9 +30,7 @@ set(SOURCE_FILES MediaFile.cpp
|
||||
../include/ffcpp/Resampler.h
|
||||
Player.cpp
|
||||
../include/ffcpp/Player.h
|
||||
../include/ffcpp/TSQueue.h
|
||||
../include/ffcpp/atomicops.h
|
||||
../include/ffcpp/readerwriterqueue.h)
|
||||
../include/ffcpp/TSQueue.h)
|
||||
|
||||
add_library(ffcpp ${SOURCE_FILES})
|
||||
target_link_libraries(ffcpp ${FFMPEG_LIBRARIES})
|
||||
|
||||
118
src/Codec.cpp
118
src/Codec.cpp
@ -1,34 +1,22 @@
|
||||
#include "ffcpp/Codec.h"
|
||||
#include "ffcpp/ffcpp.h"
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
Codec::Codec(): _codecCtx(nullptr), _codec(nullptr), _tmpFrame(nullptr), _tmpPacket(nullptr) {
|
||||
Codec::Codec(): _codecCtx(nullptr), _codec(nullptr) {
|
||||
|
||||
}
|
||||
|
||||
Codec::Codec(AVCodecID codecId, CodecType type, AVCodecParameters* params /* = nullptr */) {
|
||||
_tmpFrame = nullptr;
|
||||
_tmpPacket = nullptr;
|
||||
|
||||
Codec::Codec(AVCodecContext *ctx, CodecType type): _codecCtx(ctx) {
|
||||
if(type == CodecType::Encoder) {
|
||||
_codec = avcodec_find_encoder(codecId);
|
||||
_codec = avcodec_find_encoder(ctx->codec_id);
|
||||
} else {
|
||||
_codec = avcodec_find_decoder(codecId);
|
||||
_codec = avcodec_find_decoder(ctx->codec_id);
|
||||
}
|
||||
|
||||
if(!_codec) throw std::runtime_error("cannot find codec");
|
||||
|
||||
_codecCtx = avcodec_alloc_context3(_codec);
|
||||
if(!_codecCtx) throw std::runtime_error("cannot allocate codec context");
|
||||
|
||||
if(params) {
|
||||
int res = avcodec_parameters_to_context(_codecCtx, params);
|
||||
if(res < 0) throwIfError(res, "cannot copy codec papameters from stream");
|
||||
}
|
||||
|
||||
int res = avcodec_open2(_codecCtx, _codec, nullptr);
|
||||
throwIfError(res, "cannot open codec");
|
||||
}
|
||||
@ -36,8 +24,6 @@ namespace ffcpp {
|
||||
Codec::Codec(AVCodecContext *ctx, AVCodec *codec) {
|
||||
_codecCtx = ctx;
|
||||
_codec = codec;
|
||||
_tmpFrame = nullptr;
|
||||
_tmpPacket = nullptr;
|
||||
|
||||
int res = avcodec_open2(_codecCtx, _codec, nullptr);
|
||||
throwIfError(res, "cannot open codec");
|
||||
@ -49,11 +35,6 @@ namespace ffcpp {
|
||||
}
|
||||
}
|
||||
|
||||
const AVCodec *Codec::nativeCodecPtr() const
|
||||
{
|
||||
return _codec;
|
||||
}
|
||||
|
||||
Codec::operator AVCodecContext*() const {
|
||||
return _codecCtx;
|
||||
}
|
||||
@ -107,50 +88,8 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
void Codec::setPixelFormat(AVPixelFormat pixelFormat) {
|
||||
if(pixelFormat == AV_PIX_FMT_NONE) {
|
||||
_codecCtx->pix_fmt = _codec->pix_fmts[0];
|
||||
} else {
|
||||
_codecCtx->pix_fmt = pixelFormat;
|
||||
}
|
||||
}
|
||||
|
||||
void Codec::setTimeBase(AVRational timeBase) {
|
||||
_codecCtx->time_base = timeBase;
|
||||
}
|
||||
|
||||
void Codec::setSampleFormat(AVSampleFormat sampleFormat)
|
||||
{
|
||||
if(sampleFormat == AV_SAMPLE_FMT_NONE) {
|
||||
_codecCtx->sample_fmt = _codec->sample_fmts[0];
|
||||
} else {
|
||||
_codecCtx->sample_fmt = sampleFormat;
|
||||
}
|
||||
}
|
||||
|
||||
void Codec::setGlobalQuality(int quality)
|
||||
{
|
||||
_codecCtx->global_quality = quality;
|
||||
}
|
||||
|
||||
void Codec::setChannelCount(int channels)
|
||||
{
|
||||
_codecCtx->channels = channels;
|
||||
}
|
||||
|
||||
void Codec::setChannelLayout(uint64_t layout)
|
||||
{
|
||||
_codecCtx->channel_layout = layout;
|
||||
}
|
||||
|
||||
void Codec::setSampleRate(int sampleRate)
|
||||
{
|
||||
_codecCtx->sample_rate = sampleRate;
|
||||
}
|
||||
|
||||
void Codec::setStdCompliance(int compliance)
|
||||
{
|
||||
_codecCtx->strict_std_compliance = compliance;
|
||||
}
|
||||
|
||||
Codec::Codec(Codec&& c) noexcept {
|
||||
*this = std::move(c);
|
||||
@ -164,57 +103,36 @@ namespace ffcpp {
|
||||
return *this;
|
||||
}
|
||||
|
||||
std::tuple<FramePtr, bool> Codec::decode(PacketPtr packet) {
|
||||
FramePtr frame = _tmpFrame ? _tmpFrame : std::make_shared<Frame>();
|
||||
Frame Codec::decode(Packet &packet) {
|
||||
Frame frame;
|
||||
int gotPicture = 0;
|
||||
auto decFunc = (_codecCtx->codec_type == AVMEDIA_TYPE_VIDEO ? avcodec_decode_video2 : avcodec_decode_audio4);
|
||||
|
||||
int res = 0;
|
||||
if(packet) {
|
||||
res = avcodec_send_packet(_codecCtx, *packet.get());
|
||||
while(!gotPicture) {
|
||||
int res = decFunc(_codecCtx, frame, &gotPicture, packet);
|
||||
if(res < 0) throw std::runtime_error("cannot decode packet");
|
||||
}
|
||||
|
||||
res = avcodec_receive_frame(_codecCtx, frame->nativePtr());
|
||||
_tmpFrame = res == AVERROR(EAGAIN) ? frame : nullptr;
|
||||
|
||||
if(res == AVERROR(EAGAIN) || res == AVERROR_EOF) {
|
||||
if(res == AVERROR_EOF) {
|
||||
std::cout << "================ EOF" << std::endl;
|
||||
}
|
||||
return std::make_tuple(nullptr, true);
|
||||
} else if(res < 0) {
|
||||
throw std::runtime_error("cannot decode packet");
|
||||
}
|
||||
|
||||
if(_codecCtx->codec_type == AVMEDIA_TYPE_VIDEO) {
|
||||
frame->guessPts();
|
||||
} else if(_codecCtx->codec_type == AVMEDIA_TYPE_AUDIO) {
|
||||
frame->guessChannelLayout();
|
||||
frame.guessPts();
|
||||
}
|
||||
|
||||
_tmpPacket = packet;
|
||||
return std::make_tuple(frame, false);
|
||||
return frame;
|
||||
}
|
||||
|
||||
Packet Codec::encode(FramePtr frame) {
|
||||
Packet Codec::encode(AVFrame* frame) {
|
||||
Packet packet;
|
||||
int gotPacket = 0;
|
||||
auto encFunc = (_codecCtx->codec_type == AVMEDIA_TYPE_VIDEO ? avcodec_encode_video2 : avcodec_encode_audio2);
|
||||
|
||||
int res = avcodec_send_frame(_codecCtx, frame->nativePtr());
|
||||
int res = encFunc(_codecCtx, packet, frame, &gotPacket);
|
||||
if(res < 0) throw std::runtime_error("cannot encode frame");
|
||||
|
||||
while (res >= 0) {
|
||||
res = avcodec_receive_packet(_codecCtx, packet);
|
||||
if(res == AVERROR(EAGAIN) || res == AVERROR_EOF) {
|
||||
break;
|
||||
} else if(res < 0) {
|
||||
throw std::runtime_error("cannot encode frame");
|
||||
}
|
||||
}
|
||||
|
||||
return packet;
|
||||
}
|
||||
|
||||
FramePtr Codec::createAudioFrame() const {
|
||||
return std::make_shared<Frame>(_codecCtx->frame_size, _codecCtx->channels, _codecCtx->codec->sample_fmts[0], _codecCtx->sample_rate);
|
||||
Frame Codec::createAudioFrame() const {
|
||||
return Frame(_codecCtx->frame_size, _codecCtx->channels, _codecCtx->codec->sample_fmts[0], _codecCtx->sample_rate);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -11,8 +11,9 @@ namespace ffcpp {
|
||||
throw std::runtime_error("cannot create audio fifo queue");
|
||||
}
|
||||
|
||||
void FifoQueue::addSamples(FramePtr frame) {
|
||||
addSamples((void**)frame->nativePtr()->data, frame->samplesCount());
|
||||
void FifoQueue::addSamples(const Frame &frame) {
|
||||
const AVFrame* frameImpl = frame;
|
||||
addSamples((void**)frameImpl->data, frameImpl->nb_samples);
|
||||
}
|
||||
|
||||
void FifoQueue::addSamples(void **data, int samplesCount) {
|
||||
@ -27,8 +28,10 @@ namespace ffcpp {
|
||||
return av_audio_fifo_size(_fifo) >= _frameSize;
|
||||
}
|
||||
|
||||
void FifoQueue::readFrame(FramePtr frame) {
|
||||
int res = av_audio_fifo_read(_fifo, (void**)frame->nativePtr()->data, _frameSize);
|
||||
void FifoQueue::readFrame(Frame& frame) {
|
||||
AVFrame* nativeFrame = frame;
|
||||
|
||||
int res = av_audio_fifo_read(_fifo, (void**)nativeFrame->data, _frameSize);
|
||||
throwIfError(res, "cannot read data from fifo queue");
|
||||
}
|
||||
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
#include "ffcpp/ffcpp.h"
|
||||
#include "ffcpp/Frame.h"
|
||||
|
||||
#include <stdexcept>
|
||||
|
||||
namespace ffcpp {
|
||||
@ -59,12 +58,8 @@ namespace ffcpp {
|
||||
return _frame;
|
||||
}
|
||||
|
||||
AVFrame* Frame::nativePtr() {
|
||||
return _frame;
|
||||
}
|
||||
|
||||
void Frame::guessPts() {
|
||||
_frame->pts = _frame->best_effort_timestamp;
|
||||
_frame->pts = av_frame_get_best_effort_timestamp(_frame);
|
||||
}
|
||||
|
||||
void Frame::setPictureType(AVPictureType type) {
|
||||
@ -87,19 +82,4 @@ namespace ffcpp {
|
||||
return _frame->pts;
|
||||
}
|
||||
|
||||
void Frame::guessChannelLayout() {
|
||||
if(_frame->channel_layout == 0) {
|
||||
_frame->channel_layout = (uint64_t)av_get_default_channel_layout(_frame->channels);
|
||||
}
|
||||
}
|
||||
|
||||
int Frame::size() const {
|
||||
if(_frame->nb_samples > 0) {
|
||||
return _frame->nb_samples*_frame->channels*av_get_bytes_per_sample(static_cast<AVSampleFormat>(_frame->format));
|
||||
} else {
|
||||
// TODO: Return something meaningful here
|
||||
return _frame->pkt_size >= 0 ? _frame->pkt_size : _frame->linesize[0];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -16,10 +16,6 @@ namespace ffcpp {
|
||||
|
||||
_streams.reserve(_formatCtx->nb_streams);
|
||||
for(size_t i = 0; i < _formatCtx->nb_streams; ++i) {
|
||||
auto codecType = _formatCtx->streams[i]->codecpar->codec_type;
|
||||
if(codecType != AVMEDIA_TYPE_VIDEO && codecType != AVMEDIA_TYPE_AUDIO)
|
||||
continue;
|
||||
|
||||
auto stream = std::make_shared<Stream>(_formatCtx->streams[i]);
|
||||
_streams.emplace_back(stream);
|
||||
}
|
||||
@ -45,7 +41,7 @@ namespace ffcpp {
|
||||
|
||||
bool MediaFile::hasStream(AVMediaType type) const {
|
||||
for(size_t i = 0; i < _formatCtx->nb_streams; ++i) {
|
||||
if(_formatCtx->streams[i]->codecpar->codec_type == type) {
|
||||
if(_formatCtx->streams[i]->codec->codec_type == type) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -63,7 +59,7 @@ namespace ffcpp {
|
||||
|
||||
StreamPtr MediaFile::getStream(AVMediaType type, size_t index) {
|
||||
for(size_t i = 0, curIndex = 0; i < _formatCtx->nb_streams; ++i) {
|
||||
if(_formatCtx->streams[i]->codecpar->codec_type == type) {
|
||||
if(_formatCtx->streams[i]->codec->codec_type == type) {
|
||||
if(curIndex == index) {
|
||||
return _streams[i];
|
||||
} else {
|
||||
@ -98,15 +94,22 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
StreamPtr MediaFile::addVideoStream(AVCodecID codecID, int width, int height, AVRational timeBase, AVPixelFormat pixelFormat) {
|
||||
CodecPtr codec = std::make_shared<Codec>(codecID, CodecType::Encoder);
|
||||
AVCodec* codec = avcodec_find_encoder(codecID);
|
||||
if(!codec) throw std::runtime_error("cannot find codec");
|
||||
|
||||
AVStream* stream = avformat_new_stream(_formatCtx, codec->nativeCodecPtr());
|
||||
AVStream* stream = avformat_new_stream(_formatCtx, codec);
|
||||
if(!stream) throw std::runtime_error("cannot create stream");
|
||||
|
||||
codec->setWidth(width);
|
||||
codec->setHeight(height);
|
||||
codec->setTimeBase(timeBase);
|
||||
codec->setPixelFormat(pixelFormat);
|
||||
AVCodecContext* ctx = stream->codec;
|
||||
ctx->width = width;
|
||||
ctx->height = height;
|
||||
ctx->time_base = timeBase;
|
||||
|
||||
if(pixelFormat == AV_PIX_FMT_NONE) {
|
||||
ctx->pix_fmt = codec->pix_fmts[0];
|
||||
} else {
|
||||
ctx->pix_fmt = pixelFormat;
|
||||
}
|
||||
|
||||
auto sPtr = std::make_shared<Stream>(stream, codec);
|
||||
_streams.emplace_back(sPtr);
|
||||
@ -114,34 +117,40 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
StreamPtr MediaFile::addAudioStream(AVCodecID codecID, int channels, int sampleRate, AVSampleFormat sampleFormat) {
|
||||
CodecPtr codec = std::make_shared<Codec>(codecID, CodecType::Encoder);
|
||||
AVCodec* codec = avcodec_find_encoder(codecID);
|
||||
if(!codec) throw std::runtime_error("cannot find codec");
|
||||
|
||||
AVStream* stream = avformat_new_stream(_formatCtx, codec->nativeCodecPtr());
|
||||
AVStream* stream = avformat_new_stream(_formatCtx, codec);
|
||||
if(!stream) throw std::runtime_error("cannot create stream");
|
||||
|
||||
codec->setSampleFormat(sampleFormat);
|
||||
codec->setGlobalQuality(10);
|
||||
codec->setChannelCount(channels);
|
||||
codec->setChannelLayout(av_get_default_channel_layout(channels));
|
||||
codec->setSampleRate(sampleRate);
|
||||
codec->setTimeBase(AVRational {1, sampleRate});
|
||||
codec->setStdCompliance(FF_COMPLIANCE_EXPERIMENTAL);
|
||||
AVCodecContext* ctx = stream->codec;
|
||||
if(sampleFormat == AV_SAMPLE_FMT_NONE) {
|
||||
ctx->sample_fmt = codec->sample_fmts[0];
|
||||
} else {
|
||||
ctx->sample_fmt = sampleFormat;
|
||||
}
|
||||
ctx->global_quality = 10;
|
||||
ctx->channels = channels;
|
||||
ctx->channel_layout = (uint64_t)av_get_default_channel_layout(channels);
|
||||
ctx->sample_rate = sampleRate;
|
||||
ctx->time_base = AVRational {1, sampleRate};
|
||||
ctx->strict_std_compliance = FF_COMPLIANCE_EXPERIMENTAL;
|
||||
|
||||
auto sPtr = std::make_shared<Stream>(stream, codec);
|
||||
_streams.emplace_back(sPtr);
|
||||
return sPtr;
|
||||
}
|
||||
|
||||
PacketPtr MediaFile::readPacket() {
|
||||
Packet MediaFile::readPacket() {
|
||||
AVPacket packet;
|
||||
packet.data = nullptr;
|
||||
packet.size = 0;
|
||||
int res = av_read_frame(_formatCtx, &packet);
|
||||
return std::make_shared<Packet>(packet);
|
||||
return Packet(packet);
|
||||
}
|
||||
|
||||
AVMediaType MediaFile::packetType(const PacketPtr packet) {
|
||||
return _formatCtx->streams[packet->streamIndex()]->codecpar->codec_type;
|
||||
AVMediaType MediaFile::packetType(const Packet &packet) {
|
||||
return _formatCtx->streams[packet.streamIndex()]->codec->codec_type;
|
||||
}
|
||||
|
||||
void MediaFile::writeHeader() {
|
||||
|
||||
208
src/Player.cpp
208
src/Player.cpp
@ -1,220 +1,54 @@
|
||||
#include "ffcpp/Player.h"
|
||||
#include "ffcpp/Stream.h"
|
||||
#include "ffcpp/Scaler.h"
|
||||
#include "ffcpp/Resampler.h"
|
||||
#include <iostream>
|
||||
#include <chrono>
|
||||
#include <ctime>
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
Player::Player(std::shared_ptr<IVideoSink> vSink,
|
||||
std::shared_ptr<IAudioSink> aSink): _vSink(vSink),
|
||||
_aSink(aSink),
|
||||
Player::Player(std::shared_ptr<IVideoSink> vSink): _vSink(vSink),
|
||||
_curMedia(nullptr),
|
||||
_aStream(nullptr),
|
||||
_vStream(nullptr),
|
||||
_state(PlayerState::Stopped),
|
||||
_aSamplesBuffer(new uint8_t[AUDIO_BUFFER_LENGTH]),
|
||||
_samplesInBuffer(0),
|
||||
_decodeThread(&Player::decode, this),
|
||||
_vPlayThread(&Player::displayFrames, this),
|
||||
_videoFrames(100),
|
||||
_audioFrames(100)
|
||||
_state(PlayerState::Stopped)
|
||||
{
|
||||
init();
|
||||
_aSink->setAudioSource(this);
|
||||
}
|
||||
|
||||
Player::~Player() {
|
||||
std::cout << "Player destructor" << std::endl;
|
||||
// _state = PlayerState::Shutdown;
|
||||
// std::cout << "destructor" << std::endl;
|
||||
// _stateCond.notify_all();
|
||||
//
|
||||
// if(_decodeThread.joinable()) {
|
||||
// _decodeThread.join();
|
||||
// }
|
||||
//
|
||||
// if(_vPlayThread.joinable()) {
|
||||
// _vPlayThread.join();
|
||||
// }
|
||||
|
||||
}
|
||||
|
||||
void Player::setMedia(std::string path) {
|
||||
std::lock_guard<std::mutex> lock(_mutex);
|
||||
_curMedia = std::make_unique<MediaFile>(path, Mode::Read);
|
||||
|
||||
_vStream = _curMedia->videoStream();
|
||||
_aStream = _curMedia->audioStream();
|
||||
|
||||
auto codec = _aStream->codec().get();
|
||||
|
||||
std::cout << "Input sample rate: " << _aStream->codec()->sampleRate() << std::endl;
|
||||
std::cout << "Input channels: " << _aStream->codec()->channels() << std::endl;
|
||||
|
||||
_resampler = std::make_shared<Resampler>(_aStream->codec()->channels(),
|
||||
_aStream->codec()->channelLayout(),
|
||||
_aStream->codec()->sampleRate(),
|
||||
_aStream->codec()->sampleFormat(),
|
||||
_aSink->getChannelsCount(),
|
||||
av_get_default_channel_layout(_aSink->getChannelsCount()),
|
||||
_aSink->getSampleRate(),
|
||||
_aSink->getSampleFormat());
|
||||
}
|
||||
|
||||
void Player::setVideoSize(size_t width, size_t height) {
|
||||
std::lock_guard<std::mutex> lock(_mutex);
|
||||
_scaler = std::make_shared<Scaler>(_vStream->codec()->width(),
|
||||
_vStream->codec()->height(),
|
||||
_vStream->codec()->pixelFormat(),
|
||||
width, height, _vSink->getPixelFormat());
|
||||
}
|
||||
|
||||
void Player::play() {
|
||||
std::lock_guard<std::mutex> lock(_mutex);
|
||||
|
||||
if(!_curMedia)
|
||||
return;
|
||||
|
||||
_state = PlayerState::Playing;
|
||||
_stateCond.notify_all();
|
||||
auto vDecoder = _vStream->codec();
|
||||
auto aDecoder = _aStream->codec();
|
||||
|
||||
Scaler scaler(vDecoder->width(), vDecoder->height(), vDecoder->pixelFormat(),
|
||||
_vSink->getWidth(), _vSink->getHeight(), _vSink->getPixelFormat());
|
||||
while(auto packet = _curMedia->readPacket()) {
|
||||
AVMediaType packetType = _curMedia->packetType(packet);
|
||||
if(packetType == AVMEDIA_TYPE_VIDEO) {
|
||||
auto frame = vDecoder->decode(packet);
|
||||
frame = scaler.scale(frame);
|
||||
AVFrame* f = frame;
|
||||
//_vSink->drawFrame(f->data, f->linesize[0]);
|
||||
_vSink->drawPlanarYUVFrame(f->data[0], f->data[1], f->data[2],
|
||||
f->linesize[0], f->linesize[1], f->linesize[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Player::decode() {
|
||||
PacketPtr packet;
|
||||
|
||||
while(true) {
|
||||
std::unique_lock<std::mutex> lock(_mutex);
|
||||
if(_state == PlayerState::Shutdown)
|
||||
break;
|
||||
|
||||
packet = _curMedia ? _curMedia->readPacket() : nullptr;
|
||||
if(!packet) {
|
||||
_stateCond.wait(lock,
|
||||
[this] { return _state == PlayerState::Playing || _state == PlayerState::Shutdown; });
|
||||
continue;
|
||||
}
|
||||
|
||||
AVMediaType packetType = _curMedia->packetType(packet);
|
||||
if(packetType != AVMEDIA_TYPE_VIDEO && packetType != AVMEDIA_TYPE_AUDIO)
|
||||
continue;
|
||||
|
||||
CodecPtr codec = packetType == AVMEDIA_TYPE_VIDEO ? _vStream->codec() : _aStream->codec();
|
||||
FrameQueue* queue = packetType == AVMEDIA_TYPE_VIDEO ? &_videoFrames : &_audioFrames;
|
||||
|
||||
auto [frame, packedDecoded] = codec->decode(packet);
|
||||
if(!frame) {
|
||||
// Frame partially decoded, but not ready yet
|
||||
// We need next packet to decode rest of the frame
|
||||
continue;
|
||||
} else if(!packedDecoded) {
|
||||
lock.unlock();
|
||||
processFrame(frame, packetType, queue);
|
||||
lock.lock();
|
||||
|
||||
// Frame is fully decoded, but packet contains more data (at least beginning of the next frame)
|
||||
// So, we need to continue decoding current packet
|
||||
while (!packedDecoded) {
|
||||
// Decoding nullptr means "decode previous cached packet"
|
||||
std::tie(frame, packedDecoded) = _vStream->codec()->decode(nullptr);
|
||||
if(frame) {
|
||||
lock.unlock();
|
||||
processFrame(frame, packetType, queue);
|
||||
lock.lock();
|
||||
std::cout << "decode function started" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Player::processFrame(FramePtr frame, AVMediaType type, FrameQueue* queue) {
|
||||
if(type == AVMEDIA_TYPE_VIDEO) {
|
||||
frame = _scaler->scale(frame);
|
||||
} else {
|
||||
frame = _resampler->resample(frame);
|
||||
}
|
||||
|
||||
while(!queue->try_enqueue(frame)) {
|
||||
//std::cout << "waiting for enqueue video frame" << std::endl;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
}
|
||||
}
|
||||
|
||||
void Player::displayFrames() {
|
||||
int frameCounter = 0;
|
||||
auto start = std::chrono::system_clock::now();
|
||||
while(true) {
|
||||
std::unique_lock<std::mutex> lock(_mutex);
|
||||
if(_state == PlayerState::Shutdown)
|
||||
break;
|
||||
|
||||
if(_state != PlayerState::Playing) {
|
||||
_stateCond.wait(lock, [this]{ return _state == PlayerState::Playing || _state == PlayerState::Shutdown; });
|
||||
continue;
|
||||
}
|
||||
|
||||
lock.unlock();
|
||||
|
||||
float fps = _vStream->fps();
|
||||
FramePtr frame;
|
||||
if(_videoFrames.try_dequeue(frame)) {
|
||||
lock.lock();
|
||||
AVFrame* f = frame->nativePtr();
|
||||
_vSink->drawPlanarYUVFrame(f->data[0], f->data[1], f->data[2],
|
||||
f->linesize[0], f->linesize[1], f->linesize[2]);
|
||||
++frameCounter;
|
||||
if(frameCounter == 2398) {
|
||||
auto end = std::chrono::system_clock::now();
|
||||
std::chrono::duration<double> elapsed_seconds = end-start;
|
||||
std::cout << "Elapsed time: " << elapsed_seconds.count() << std::endl;
|
||||
}
|
||||
lock.unlock();
|
||||
} else {
|
||||
std::cout << "=============== skip video frame" << std::endl;
|
||||
}
|
||||
|
||||
std::this_thread::sleep_for(std::chrono::microseconds (static_cast<int64_t>(1000000/fps)));
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t time = 0;
|
||||
void Player::fillSampleBuffer(uint8_t *data, int length) {
|
||||
int copied = 0;
|
||||
|
||||
if(_samplesInBuffer > 0) {
|
||||
memcpy(data, _aSamplesBuffer.get(), _samplesInBuffer);
|
||||
copied = _samplesInBuffer;
|
||||
_samplesInBuffer = 0;
|
||||
}
|
||||
|
||||
while (copied < length) {
|
||||
FramePtr frame;
|
||||
while(!_audioFrames.try_dequeue(frame)) {
|
||||
std::cout << "waiting for audio frame" << std::endl;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
}
|
||||
|
||||
// TODO: Implement correct behaviour for planar audio
|
||||
AVFrame* f = frame->nativePtr();
|
||||
int frameSize = frame->size();
|
||||
|
||||
// std::cout << "Samples: " << f->nb_samples << std::endl;
|
||||
// std::cout << "Channels: " << f->channels << std::endl;
|
||||
// std::cout << "Bytes per sample: " << av_get_bytes_per_sample(_aStream->codec()->sampleFormat()) << std::endl;
|
||||
// std::cout << "Linesize[0]: " << f->linesize[0] << std::endl;
|
||||
// std::cout << "Linesize[1]: " << f->linesize[1] << std::endl;
|
||||
// std::cout << "Frame size: " << frameSize << std::endl;
|
||||
|
||||
if(copied + frameSize > length) {
|
||||
memcpy(data + copied, f->data[0], length - copied);
|
||||
memcpy(_aSamplesBuffer.get(), f->data[0] + length - copied, frameSize - length + copied);
|
||||
_samplesInBuffer = frameSize - length + copied;
|
||||
copied = length;
|
||||
} else {
|
||||
memcpy(data + copied, f->data[0], frameSize);
|
||||
copied += frameSize;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
@ -9,9 +9,8 @@ extern "C" {
|
||||
|
||||
namespace ffcpp {
|
||||
|
||||
Resampler::Resampler(int inChannelCount, int inChannelLayout, int inSampleRate, AVSampleFormat inSampleFormat,
|
||||
int outChannelCount, int outChannelLayout, int outSampleRate, AVSampleFormat outSampleFormat) {
|
||||
_dstChannelCount = outChannelCount;
|
||||
Resampler::Resampler(int inChannelLayout, int inSampleRate, AVSampleFormat inSampleFormat, int outChannelLayout,
|
||||
int outSampleRate, AVSampleFormat outSampleFormat) {
|
||||
_dstChannelLayout = outChannelLayout;
|
||||
_dstSampleFormat = outSampleFormat;
|
||||
_dstSampleRate = outSampleRate;
|
||||
@ -21,12 +20,10 @@ namespace ffcpp {
|
||||
throw new std::runtime_error("cannot create resampler");
|
||||
}
|
||||
|
||||
av_opt_set_int(_swrContext, "in_channel_count", inChannelCount, 0);
|
||||
av_opt_set_int(_swrContext, "in_channel_layout", inChannelLayout, 0);
|
||||
av_opt_set_int(_swrContext, "in_sample_rate", inSampleRate, 0);
|
||||
av_opt_set_sample_fmt(_swrContext, "in_sample_fmt", inSampleFormat, 0);
|
||||
|
||||
av_opt_set_int(_swrContext, "out_channel_count", outChannelCount, 0);
|
||||
av_opt_set_int(_swrContext, "out_channel_layout", outChannelLayout, 0);
|
||||
av_opt_set_int(_swrContext, "out_sample_rate", outSampleRate, 0);
|
||||
av_opt_set_sample_fmt(_swrContext, "out_sample_fmt", outSampleFormat, 0);
|
||||
@ -36,8 +33,8 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
Resampler::Resampler(CodecPtr decoder, CodecPtr encoder)
|
||||
: Resampler(decoder->channels(), decoder->channelLayout(), decoder->sampleRate(), decoder->sampleFormat(),
|
||||
encoder->channels(), encoder->channelLayout(), encoder->sampleRate(), encoder->sampleFormat()) {
|
||||
: Resampler(decoder->channelLayout(), decoder->sampleRate(), decoder->sampleFormat(),
|
||||
encoder->channelLayout(), encoder->sampleRate(), encoder->sampleFormat()) {
|
||||
}
|
||||
|
||||
Resampler::~Resampler() {
|
||||
@ -46,13 +43,13 @@ namespace ffcpp {
|
||||
}
|
||||
}
|
||||
|
||||
FramePtr Resampler::resample(FramePtr inFrame) {
|
||||
int outSamples = swr_get_out_samples(_swrContext, inFrame->samplesCount());
|
||||
Frame Resampler::resample(Frame& inFrame) {
|
||||
int channelsCount = av_get_channel_layout_nb_channels(_dstChannelLayout);
|
||||
AVFrame* fin = inFrame;
|
||||
int outSamples = swr_get_out_samples(_swrContext, fin->nb_samples);
|
||||
|
||||
FramePtr outFrame = std::make_shared<Frame>(outSamples, _dstChannelCount, _dstSampleFormat, _dstSampleRate);
|
||||
AVFrame *out = outFrame->nativePtr(), *in = inFrame->nativePtr();
|
||||
|
||||
int res = swr_convert_frame(_swrContext, out, in);
|
||||
Frame outFrame(outSamples, channelsCount, _dstSampleFormat, _dstSampleRate);
|
||||
int res = swr_convert_frame(_swrContext, outFrame, inFrame);
|
||||
throwIfError(res, "cannot convert audio frame");
|
||||
|
||||
return outFrame;
|
||||
|
||||
@ -21,11 +21,11 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
|
||||
FramePtr Scaler::scale(FramePtr inFrame) {
|
||||
FramePtr outFrame = std::make_shared<Frame>(_dstWidth, _dstHeight, _dstPixFmt);
|
||||
Frame Scaler::scale(Frame &inFrame) {
|
||||
Frame outFrame(_dstWidth, _dstHeight, _dstPixFmt);
|
||||
|
||||
AVFrame* fin = inFrame->nativePtr();
|
||||
AVFrame* fout = outFrame->nativePtr();
|
||||
AVFrame* fin = inFrame;
|
||||
AVFrame* fout = outFrame;
|
||||
fout->pts = fin->pts;
|
||||
|
||||
int res = sws_scale(_swsContext, (uint8_t const * const *)fin->data, fin->linesize, 0, fin->height, fout->data, fout->linesize);
|
||||
|
||||
@ -7,10 +7,11 @@ namespace ffcpp {
|
||||
}
|
||||
|
||||
Stream::Stream(AVStream *stream): _stream(stream) {
|
||||
_codec = std::make_shared<Codec>(_stream->codecpar->codec_id, CodecType::Decoder, _stream->codecpar);
|
||||
_codec = std::make_shared<Codec>(_stream->codec, CodecType::Decoder);
|
||||
}
|
||||
|
||||
Stream::Stream(AVStream *stream, CodecPtr codec): _stream(stream), _codec(codec) {
|
||||
Stream::Stream(AVStream *stream, AVCodec* encoder): _stream(stream) {
|
||||
_codec = std::make_shared<Codec>(_stream->codec, encoder);
|
||||
}
|
||||
|
||||
Stream::operator AVStream*() const {
|
||||
@ -29,10 +30,6 @@ namespace ffcpp {
|
||||
_stream->time_base = timeBase;
|
||||
}
|
||||
|
||||
float Stream::fps() const {
|
||||
return 1.0*_stream->avg_frame_rate.num/_stream->avg_frame_rate.den;
|
||||
}
|
||||
|
||||
Stream::Stream(Stream&& stream) noexcept {
|
||||
*this = std::move(stream);
|
||||
}
|
||||
|
||||
@ -8,6 +8,7 @@ extern "C" {
|
||||
namespace ffcpp {
|
||||
|
||||
void init() {
|
||||
av_register_all();
|
||||
}
|
||||
|
||||
void throwIfError(int result, const std::string& description) {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user